Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Infect Dis ; 228(3): 245-250, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-36967714

RESUMO

Convalescent plasma (CP) treatment of coronavirus disease 2019 (COVID-19) has shown significant therapeutic effect when administered early (eg, Argentinian trial showing reduced hospitalization) but has in general been ineffective (eg, REMAP-CAP trial without improvement during hospitalization). To investigate whether the differences in CP used could explain the different outcomes, we compared neutralizing antibodies, anti-spike IgG, and avidity of CP used in the REMAP-CAP and Argentinian trials and in convalescent vaccinees. We found no difference between the trial plasmas, emphasizing initial patient serostatus as treatment efficacy predictor. By contrast, vaccinee CP showed significantly higher titers and avidity, being preferable for future CP treatment. Clinical Trials Registration. NCT02735707 and NCT04479163.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , Doadores de Sangue , COVID-19/terapia , Soroterapia para COVID-19 , Imunização Passiva
2.
Infect Drug Resist ; 16: 595-605, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36733921

RESUMO

Respiratory syncytial virus (RSV) has a major role in respiratory infections in young infants around the world. However, substantial progress has been made in recent years in the field of RSV. A wide variety of observational studies and clinical trials published in the past decade provide a thorough idea of the health and economic burden of RSV disease in the developing world. In this review, we discuss the impact of RSV burden of disease, major gaps in disease estimations, and challenges in generating new therapeutic options and an immune response against the virus, and briefly describe next generation technologies that are being evaluated.

4.
Clin Infect Dis ; 73(Suppl_5): S435-S441, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34910178

RESUMO

BACKGROUND: Precise determination of the causal chain that leads to community deaths in children in low- and middle-income countries is critical to estimating all causes of mortality accurately and to planning preemptive strategies for targeted allocation of resources to reduce this scourge. METHODS: An active surveillance population-based study that combined minimally invasive tissue sampling (MITS) and verbal autopsies (VA) among children under 5 was conducted in Buenos Aires, Argentina, from September 2018 to December 2020 to define the burden of all causes of community deaths. RESULTS: Among 90 cases enrolled (86% of parental acceptance), 81 had complete MITS, 15.6% were neonates, 65.6% were post-neonatal infants, and 18.9% were children aged 1-5 years. Lung infections were the most common cause of death (CoD) in all age groups (57.8%). Among all cases of lung infections, acute bronchiolitis was the most common CoD in infants aged <12 months (23 of 36, 63.9%), and bacterial pneumonia was the most common cause in children aged >12 months (8 of 11, 72.7%). The most common comorbid condition in all age groups was undernutrition in 18 of 90 (20%). It was possible to find an immediate CoD in 78 of 81 subjects where MITS could be done. With this combined approach, we were able to determine that sudden infant death syndrome was overestimated in state reports. CONCLUSIONS: CoD determination by a combination of MITS and VA provides an accurate estimation of the chain of events that leads to death, emphasizing possible interventions to prevent mortality in children.


Assuntos
Pais , Pesquisa , Argentina/epidemiologia , Autopsia , Causas de Morte , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido
5.
Sci Transl Med ; 13(616): eabj7843, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34669442

RESUMO

In 1967, two toddlers immunized with a formalin-inactivated vaccine against respiratory syncytial virus (FIRSV) in the United States died from enhanced RSV disease (ERD), a severe form of illness resulting from aberrant priming of the antiviral immune response during vaccination. Up to 80% of immunized children subsequently exposed to wild-type virus were hospitalized. These events hampered RSV vaccine development for decades. Here, we provide a characterization of the clinical, immunopathological, and transcriptional signature of fatal human ERD, outlining evidence for safety evaluation of RSV vaccines and a framework for understanding disease enhancement for pathogens in general.


Assuntos
Doenças Transmissíveis , Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Pré-Escolar , Humanos , Infecções por Vírus Respiratório Sincicial/epidemiologia , Vírus Sinciciais Respiratórios
6.
Clin Infect Dis ; 73(Suppl_3): S210-S217, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34472572

RESUMO

BACKGROUND: Many deaths in infants from low-middle income countries (LMICs) occur at home or upon arrival to health facilities. Although acute lower respiratory tract illness plays an important role in community mortality, the accuracy of mortality rates due to respiratory syncytial virus (RSV) remains unknown. METHODS: An active surveillance study among children aged under 5 years old (U5) was performed in Buenos Aires, Argentina, between January and December 2019, to define the burden and role of RSV in childhood community mortality. RESULTS: A total of 63 families of children U5 participated in the study. Based on a combined approach of tissue sampling, verbal autopsies, and expert's analysis, RSV infection was found in the causal chain of 11 from 12 cases with positive molecular biology results in respiratory samples. The estimated mortality rate due to RSV among infants was 0.27 deaths/1000 live births. The mean age of RSV-related household deaths was 2.8 months of age (standard deviation [SD] 1.7), and 8/12 were male infants (66.7%). Dying at home from RSV was associated with Streptococcus pneumoniae and/or Moraxella catarrhalis lung coinfection (75%), living in slums and settlement (odds ratio [OR], 17.09; 95% confidence interval [CI], 1.3-219.2), and other underlying comorbidities (OR, 14.87; 95% CI, 1.3-164.6). CONCLUSIONS: Infant community mortality rates due to RSV are higher than those reported in industrialized countries and similar to those reported in hospital-based studies in the same catchment population.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Argentina/epidemiologia , Criança , Pré-Escolar , Hospitalização , Humanos , Lactente , Masculino , Infecções por Vírus Respiratório Sincicial/epidemiologia , Fatores de Risco
7.
J Clin Invest ; 131(12)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34018969

RESUMO

Efforts to best protect the world from SARS-CoV-2 as variants emerge and despite limited vaccine supply are ongoing. One strategy that may maximize vaccine coverage and expedite immunization campaigns involves providing single mRNA vaccine doses to individuals with previous COVID-19. In this issue of the JCI, two independent studies, one by Levi and Azzolini et al. and another by Mazzoni and Di Lauria et al., explored vaccine responses in individuals previously infected with the virus. Levi and Azzolini and colleagues used multilinear regression models to correlate exposure and symptoms with antibody response to the vaccine. Mazzoni and Di Lauria and colleagues characterized B cell and T cell kinetics in whole blood after one and two doses of vaccine in health care workers with and without previous infection. Both studies indicated that one vaccine dose may sufficiently protect individuals who have recovered from COVID-19. Implementing a single-dose mRNA vaccine protocol in previously symptomatic individuals may facilitate and expedite immunization campaigns.


Assuntos
Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/uso terapêutico , COVID-19 , Modelos Imunológicos , SARS-CoV-2/imunologia , Vacinação , COVID-19/imunologia , COVID-19/prevenção & controle , Humanos
8.
N Engl J Med ; 384(7): 610-618, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33406353

RESUMO

BACKGROUND: Therapies to interrupt the progression of early coronavirus disease 2019 (Covid-19) remain elusive. Among them, convalescent plasma administered to hospitalized patients has been unsuccessful, perhaps because antibodies should be administered earlier in the course of illness. METHODS: We conducted a randomized, double-blind, placebo-controlled trial of convalescent plasma with high IgG titers against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in older adult patients within 72 hours after the onset of mild Covid-19 symptoms. The primary end point was severe respiratory disease, defined as a respiratory rate of 30 breaths per minute or more, an oxygen saturation of less than 93% while the patient was breathing ambient air, or both. The trial was stopped early at 76% of its projected sample size because cases of Covid-19 in the trial region decreased considerably and steady enrollment of trial patients became virtually impossible. RESULTS: A total of 160 patients underwent randomization. In the intention-to-treat population, severe respiratory disease developed in 13 of 80 patients (16%) who received convalescent plasma and 25 of 80 patients (31%) who received placebo (relative risk, 0.52; 95% confidence interval [CI], 0.29 to 0.94; P = 0.03), with a relative risk reduction of 48%. A modified intention-to-treat analysis that excluded 6 patients who had a primary end-point event before infusion of convalescent plasma or placebo showed a larger effect size (relative risk, 0.40; 95% CI, 0.20 to 0.81). No solicited adverse events were observed. CONCLUSIONS: Early administration of high-titer convalescent plasma against SARS-CoV-2 to mildly ill infected older adults reduced the progression of Covid-19. (Funded by the Bill and Melinda Gates Foundation and the Fundación INFANT Pandemic Fund; Dirección de Sangre y Medicina Transfusional del Ministerio de Salud number, PAEPCC19, Plataforma de Registro Informatizado de Investigaciones en Salud number, 1421, and ClinicalTrials.gov number, NCT04479163.).


Assuntos
COVID-19/terapia , Imunoglobulina G/sangue , Insuficiência Respiratória/prevenção & controle , SARS-CoV-2/imunologia , Idoso , Idoso de 80 Anos ou mais , Transfusão de Componentes Sanguíneos , COVID-19/complicações , Progressão da Doença , Método Duplo-Cego , Feminino , Humanos , Imunização Passiva , Análise de Intenção de Tratamento , Estimativa de Kaplan-Meier , Masculino , Insuficiência Respiratória/etiologia , Índice de Gravidade de Doença , Soroterapia para COVID-19
9.
Transl Med Commun ; 5(1): 15, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32984543

RESUMO

COVID-19 is an infectious disease caused by the SARS-CoV-2 virus that can affect lung physiology encompassing a wide spectrum of severities, ranging from asymptomatic and mild symptoms to severe and fatal cases; the latter including massive neutrophil infiltration, stroke and multiple organ failure. Despite many recents findings, a clear mechanistic description underlying symptomatology is lacking. In this article, we thoroughly review the available data involving risk factors, age, gender, comorbidities, symptoms of disease, cellular and molecular mechanisms and the details behind host/pathogen interaction that hints at the existence of different pathophysiological mechanisms of disease. There is clear evidence that, by targeting the angiotensin-converting enzyme II (ACE2) -its natural receptor-, SARS-CoV-2 would mainly affect the renin-angiotensin-aldosterone system (RAAS), whose imbalance triggers diverse symptomatology-associated pathological processes. Downstream actors of the RAAS cascade are identified, and their interaction with risk factors and comorbidities are presented, rationalizing why a specific subgroup of individuals that present already lower ACE2 levels is particularly more susceptible to severe forms of disease. Finally, the notion of endotype discovery in the context of COVID-19 is introduced. We hypothesize that COVID-19, and its associated spectrum of severities, is an umbrella term covering different pathophysiological mechanisms (endotypes). This approach should dramatically accelerate our understanding and treatment of disease(s), enabling further discovery of pathophysiological mechanisms and leading to the identification of specific groups of patients that may benefit from personalized treatments.

10.
Inorg Chem ; 58(23): 15687-15691, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31710470

RESUMO

CuA centers perform efficient long-range electron transfer. The electronic structure of native CuA sites can be described by a double-potential well with a dominant σu* ground state in fast equilibrium with a less populated πu ground state. Here, we report a CuA mutant in which a lysine was introduced in the axial position. This results in a highly unstable protein with a pH-dependent population of the two ground states. Deep analysis of the high-pH form of this variant shows the stabilization of the πu ground state due to direct binding of the Lys residue to the copper center that we attribute to deprotonation of this residue.

11.
BMC Pediatr ; 19(1): 227, 2019 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-31279333

RESUMO

BACKGROUND: Premature birth is a growing and serious public health problem affecting more than one of every ten infants worldwide. Bronchopulmonary dysplasia (BPD) is the most common neonatal morbidity associated with prematurity and infants with BPD suffer from increased incidence of respiratory infections, asthma, other forms of chronic lung illness, and death (Day and Ryan, Pediatr Res 81: 210-213, 2017; Isayama et la., JAMA Pediatr 171:271-279, 2017). BPD is now understood as a longitudinal disease process influenced by the intrauterine environment during gestation and modulated by gene-environment interactions throughout the neonatal and early childhood periods. Despite of this concept, there remains a paucity of multidisciplinary team-based approaches dedicated to the comprehensive study of this complex disease. METHODS: The Discovery BPD (D-BPD) Program involves a cohort of infants < 1,250 g at birth prospectively followed until 6 years of age. The program integrates analysis of detailed clinical data by machine learning, genetic susceptibility and molecular translation studies. DISCUSSION: The current gap in understanding BPD as a complex multi-trait spectrum of different disease endotypes will be addressed by a bedside-to-bench and bench-to-bedside approach in the D-BPD program. The D-BPD will provide enhanced understanding of mechanisms, evolution and consequences of lung diseases in preterm infants. The D-BPD program represents a unique opportunity to combine the expertise of biologists, neonatologists, pulmonologists, geneticists and biostatisticians to examine the disease process from multiple perspectives with a singular goal of improving outcomes of premature infants. TRIAL REGISTRATION: Does not apply for this study.


Assuntos
Displasia Broncopulmonar/epidemiologia , Doenças do Prematuro/epidemiologia , Recém-Nascido de muito Baixo Peso , Estudos Multicêntricos como Assunto/métodos , Animais , Displasia Broncopulmonar/complicações , Displasia Broncopulmonar/genética , Doença Crônica , Progressão da Doença , Exposição Ambiental , Feminino , Seguimentos , Estudos de Associação Genética , Predisposição Genética para Doença , Idade Gestacional , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Doenças do Prematuro/genética , Unidades de Terapia Intensiva Neonatal , Pesquisa Interdisciplinar , Colaboração Intersetorial , Pneumopatias/etiologia , Aprendizado de Máquina , Masculino , Camundongos , Pais , Estudos Prospectivos , Testes de Função Respiratória , Pesquisa Translacional Biomédica
12.
Biochemistry ; 58(26): 2883-2892, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31243994

RESUMO

Interferon response suppression by the respiratory syncytial virus relies on two unique nonstructural proteins, NS1 and NS2, that interact with cellular partners through high-order complexes. We hypothesized that two conserved proline residues, P81 and P67, participate in the conformational change leading to oligomerization. We found that the molecular dynamics of NS1 show a highly mobile C-terminal helix, which becomes rigid upon in silico replacement of P81. A soluble oligomerization pathway into regular spherical structures at low ionic strengths competes with an aggregation pathway at high ionic strengths with an increase in temperature. P81A requires higher temperatures to oligomerize and has a small positive effect on aggregation, while P67A is largely prone to aggregation. Chemical denaturation shows a first transition, involving a high fluorescence and ellipticity change corresponding to both a conformational change and substantial effects on the environment of its single tryptophan, that is strongly destabilized by P67A but stabilized by P81A. The subsequent global cooperative unfolding corresponding to the main ß-sheet core is not affected by the proline mutations. Thus, a clear link exists between the effect of P81 and P67 on the stability of the first transition and oligomerization/aggregation. Interestingly, both P67 and P81 are located far away in space and sequence from the C-terminal helix, indicating a marked global structural dynamics. This provides a mechanism for modulating the oligomerization of NS1 by unfolding of a weak helix that exposes hydrophobic surfaces, linked to the participation of NS1 in multiprotein complexes.


Assuntos
Interferons/imunologia , Prolina/química , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/química , Proteínas não Estruturais Virais/química , Humanos , Isomerismo , Modelos Moleculares , Prolina/imunologia , Conformação Proteica , Conformação Proteica em alfa-Hélice , Multimerização Proteica , Desdobramento de Proteína , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Proteínas não Estruturais Virais/imunologia
13.
Mol Biol Evol ; 36(7): 1521-1532, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30982925

RESUMO

Redox regulation in biology is largely operated by cysteine chemistry in response to a variety of cell environmental and intracellular stimuli. The high chemical reactivity of cysteines determines their conservation in functional roles, but their presence can also result in harmful oxidation limiting their general use by proteins. Papillomaviruses constitute a unique system for studying protein sequence evolution since there are hundreds of anciently evolved stable genomes. E7, the viral transforming factor, is a dimeric, cysteine-rich oncoprotein that shows both conserved structural and variable regulatory cysteines constituting an excellent model for uncovering the mechanism that drives the acquisition of redox-sensitive groups. By analyzing over 300 E7 sequences, we found that although noncanonical cysteines show no obvious sequence conservation pattern, they are nonrandomly distributed based on topological constrains. Regulatory residues are strictly excluded from six positions stabilizing the hydrophobic core while they are enriched in key positions located at the dimerization interface or around the Zn+2 ion. Oxidation of regulatory cysteines is linked to dimer dissociation, acting as a reversible redox-sensing mechanism that triggers a conformational switch. Based on comparative sequence analysis, molecular dynamics simulations and biophysical analysis, we propose a model in which the occurrence of cysteine-rich positions is dictated by topological constrains, providing an explanation to why a degenerate pattern of cysteines can be achieved in a family of homologs. Thus, topological principles should enable the possibility to identify hidden regulatory cysteines that are not accurately detected using sequence based methodology.


Assuntos
Cisteína , Evolução Molecular , Proteínas E7 de Papillomavirus/genética , Sequência de Aminoácidos , Dimerização
14.
Arch Biochem Biophys ; 665: 96-106, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30817907

RESUMO

Here we investigated the effect of electrostatic interactions and of protein tyrosine nitration of mammalian cytochrome c on the dynamics of the so-called alkaline transition, a pH- and redox-triggered conformational change that implies replacement of the axial ligand Met80 by a Lys residue. Using a combination of electrochemical, time-resolved SERR spectroelectrochemical experiments and molecular dynamics simulations we showed that in all cases the reaction can be described in terms of a two steps minimal reaction mechanism consisting of deprotonation of a triggering group followed by ligand exchange. The pKaalk values of the transition are strongly modulated by these perturbations, with a drastic downshift upon nitration and an important upshift upon establishing electrostatic interactions with a negatively charged model surface. The value of pKaalk is determined by the interplay between the acidity of a triggering group and the kinetic constants for the forward and backward ligand exchange processes. Nitration of Tyr74 results in a change of the triggering group from Lys73 in WT Cyt to Tyr74 in the nitrated protein, which dominates the pKaalk downshift towards physiological values. Electrostatic interactions, on the other hand, result in strong acceleration of the backward ligand exchange reaction, which dominates the pKaalk upshift. The different physicochemical conditions found here to influence pKaalk are expected to vary depending on cellular conditions and subcellular localization of the protein, thus determining the existence of alternative conformations of Cyt in vivo.


Assuntos
Álcalis/química , Citocromos c/metabolismo , Nitratos/metabolismo , Eletricidade Estática , Tirosina/metabolismo , Animais , Cavalos , Concentração de Íons de Hidrogênio , Ligantes , Simulação de Dinâmica Molecular , Oxirredução
15.
ACS Omega ; 3(11): 14732-14745, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30555987

RESUMO

Among Mononegavirales, the Pneumovirus family stands out by its RNA polymerase processivity that relies on a transcription antiterminator, the M2-1 protein, which also plays a key role in viral particle assembly. Biophysical and structural evidence shows that this RNA-binding tetramer is strongly modulated by a CCCH Zn2+ binding motif. We show that while the global dissociation/unfolding free energy is 10 kcal mol-1, more stable for the respiratory syncytial virus M2-1, the human metapneumovirus (HMPV) counterpart shows a 7 kcal mol-1 higher intersubunit affinity. Removal of Zn2+ from both homologues leads to an apo-monomer of identical secondary structure that further undergoes a slow irreversible oligomerization. Mutation of the histidine residue of the Zn2+ motif to cysteine or alanine leads directly to large oligomers, strongly suggesting that metal coordination has an exquisite precision for modulating the quaternary arrangement. Zn2+ removal is very slow and requires subdenaturing concentrations of guanidine chloride, suggesting a likely local folding energy barrier. Exploring a broad combination of denaturant and ethylenediaminetetraacetic acid conditions, we showed that the metapneumovirus protein has to overcome a higher energy barrier to trigger Zn2+ removal-driven dissociation, in concordance with a slower dissociation kinetics. In silico modeling of open and close conformations for both M2-1 tetramers together with interaction energy calculations reveals that the gradual opening of protomers decreases the number of intersubunit contacts. Half of the interaction energy holding each protomer in the tetramer comes from the CCCH motif, while HMPV-M2-1 harbors additional contacts between the CCCH motif of one subunit and the core domain of a protomer located in trans, allowing the rationalization of the experimental data obtained. Overall, the evidence points at a key role of the CCCH motif in switching between structural and consequently functional alternatives of the M2-1 protein.

16.
Chem Sci ; 9(32): 6692-6702, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30310603

RESUMO

Copper sites in proteins are designed to perform either electron transfer or redox catalysis. Type 1 and CuA sites are electron transfer hubs bound to a rigid protein fold that prevents binding of exogenous ligands and side reactions. Here we report the engineering of two Type 1 sites by loop-directed mutagenesis within a CuA scaffold with unique electronic structures and functional features. A copper-thioether axial bond shorter than the copper-thiolate bond is responsible for the electronic structure features, in contrast to all other natural or chimeric sites where the copper thiolate bond is short. These sites display highly unusual features, such as: (1) a high reduction potential despite a strong interaction with the axial ligand, which we attribute to changes in the hydrogen bond network and (2) the ability to bind exogenous ligands such as imidazole and azide. This strategy widens the possibility of using natural protein scaffolds with functional features not present in nature.

18.
Free Radic Biol Med ; 126: 379-392, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30144631

RESUMO

Cationic manganese(III) ortho N-substituted pyridylporphyrins (MnP) act as efficient antioxidants catalyzing superoxide dismutation and accelerating peroxynitrite reduction. Importantly, MnP can reach mitochondria offering protection against reactive species in different animal models of disease. Although an LC-MS/MS-based method for MnP quantitation and subcellular distribution has been reported, a direct method capable of evaluating both the uptake and the redox state of MnP in living cells has not yet been developed. In the present work we applied resonance Raman (RR) spectroscopy to analyze the intracellular accumulation of two potent MnP-based lipophilic SOD mimics, MnTnBuOE-2-PyP5+ and MnTnHex-2-PyP5+ within endothelial cells. RR experiments with isolated mitochondria revealed that the reduction of Mn(III)P was affected by inhibitors of the electron transport chain, supporting the action of MnP as efficient redox active compounds in mitochondria. Indeed, RR spectra confirmed that MnP added in the Mn(III) state can be incorporated into the cells, readily reduced by intracellular components to the Mn(II) state and oxidized by peroxynitrite. To assess the combined impact of reactivity and bioavailability, we studied the kinetics of Mn(III)TnBuOE-2-PyP5+ with peroxynitrite and evaluated the cytoprotective capacity of MnP by exposing the endothelial cells to nitro-oxidative stress induced by peroxynitrite. We observed a preservation of normal mitochondrial function, attenuation of cell damage and prevention of apoptotic cell death. These data introduce a novel application of RR spectroscopy for the direct detection of MnP and their redox states inside living cells, and helps to rationalize their antioxidant capacity in biological systems.


Assuntos
Antioxidantes/metabolismo , Células Endoteliais/metabolismo , Metaloporfirinas/metabolismo , Estresse Oxidativo/genética , Animais , Aorta Torácica/crescimento & desenvolvimento , Aorta Torácica/metabolismo , Apoptose/genética , Catálise , Bovinos , Cromatografia Líquida , Células Endoteliais/química , Metaloporfirinas/química , Mitocôndrias/metabolismo , Oxirredução , Ácido Peroxinitroso/metabolismo , Análise Espectral Raman , Superóxido Dismutase/química , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo , Espectrometria de Massas em Tandem
20.
Chem Rev ; 117(21): 13382-13460, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29027792

RESUMO

Cytochrome c (cyt c) is a small soluble heme protein characterized by a relatively flexible structure, particularly in the ferric form, such that it is able to sample a broad conformational space. Depending on the specific conditions, interactions, and cellular localization, different conformations may be stabilized, which differ in structure, redox properties, binding affinities, and enzymatic activity. The primary function is electron shuttling in oxidative phosphorylation, and is exerted by the so-called native cyt c in the intermembrane mitochondrial space of healthy cells. Under pro-apoptotic conditions, however, cyt c gains cardiolipin peroxidase activity, translocates into the cytosol to engage in the intrinsic apoptotic pathway, and enters the nucleus where it impedes nucleosome assembly. Other reported functions include cytosolic redox sensing and involvement in the mitochondrial oxidative folding machinery. Moreover, post-translational modifications such as nitration, phosphorylation, and sulfoxidation of specific amino acids induce alternative conformations with differential properties, at least in vitro. Similar structural and functional alterations are elicited by biologically significant electric fields and by naturally occurring mutations of human cyt c that, along with mutations at the level of the maturation system, are associated with specific diseases. Here, we summarize current knowledge and recent advances in understanding the different structural, dynamic, and thermodynamic factors that regulate the primary electron transfer function, as well as alternative functions and conformations of cyt c. Finally, we present recent technological applications of this moonlighting protein.


Assuntos
Citocromos c/metabolismo , Animais , Técnicas Biossensoriais , Transporte de Elétrons , Humanos , Cinética , Mitocôndrias/enzimologia , Oxirredução , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...